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THE OPTIMIZED ARCH DESIGN THEORY AND ENGINEERING PRACTICES

Wang Shengli

I. General Discussion

Early, during the beginning of the 1950's, C.C. Daweiduofu,

in his book entitled "The Calculation and Design of Underground

Structures" wrote: "By studying these results, we can conclude

that the work strength of an integral underground structure is

b not attained by enlarging the thickness of the section and

excessive costs of the materials but by selecting a very good

.a lining shape and determining a rational ratio between the com-
ponent dimensions." A large amount of practice shows that

whether or not this excellent lining shape (i.e. the optimized

arch shape) has great influence on the internal force and deform-

ation of the structure as well as the engineering firmness and

economy (2-61. Therefore, the optimized arch shape design has

been given serious attention both domestically and abroad.

However, to date, we are still lacking a fast, convenient,

accurate and practical method to implement the optimized arch

shape design.

To implement the optimized arch shape design, it is not only

necessary to have qualitative inferences but it is even more

necessary to have a method with specific qualitative analysis;

not only should the precision of the calculations satisfy con-

struction requirements but it should also be simple and easy to

carry out and convenient to use. In recent years, both domest-

ically and abroad, the photoelastic method [7-8], the simulated

material test method (9-10], the finite element calculation

method [7], the engineering testing method [il, the elastic

theory analysis method (5,121 and the internal force analysis

method [1,13-15] have been used in a great deal of research on

the rationality of arch shapes under certain specific conditions.
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Yet, the common points of these methods are: they first

establish one or several types of arch shapes and

afterwards test and verify the rational load suitable for

this arch but they do not begin from the different load dis-

tributions to find the optimized arch shape suitable for the

different loads. Because the tests or calculated arch types

and quantities were limited, they were unable to cover all of

fthe various types of arches existing in actual engineering.

Because of this, there is still a gap for its widespread use.

For example, the elastic theory was used to study the rational

loads of holonomic circles and holonomic ellipses under four-

way stress conditions yet a part of the arch in actual engin-

eering is often circular or elliptical and moreover the

majority must consider three-dimensional stress. Thus, under

these conditions, how should we determine the optimized arch

shape? Research of the elastic theory on straight wall circular

arches is only limited to analyzing the stress conditions of

several known arch shapes and it is still unable to resolve the

problem of how to find the optimized arch shape under different

load distributions.

Naturally, on the basis of various research achievements,

many authors [4,7,16-18] have carried out comprehensive discus-

sions on the relationship of load and optimized arch shape and

pointed out certain optimized arch shapes under specified loads.

Without a doubt, it provides a train of thinking and convenience

for the optimized arch shape design. However, these qualitative

discussions are still unable to universally guide the optimized

arch shape design work. For example, the book entitled Static

Force Calculations of Underground Structures (16] proposed:

"When the entire span of the arch sustains a vertical even dis-
tributed load, it is better to use the parabolic arch axis.

When the arch only sustains the radial evenly distributed load,

it is better to use the single centered circular arch. When the

arch sustains an arbitrary load and the rise and span are fixed,
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it is better to use a three-centered arch axis. Because we can

use the sizes of varying radii R and r, the arch axis can as

much as possible approach the stress curve." However, how do

we change the size of R and r based on the changes of the load?

4- There is no method brought forth in the book and therefore this

problem requires further study to be resolved.

In the past and at present, China has continued to use the

checking computations method [19-211. This method which has

many repetitions of checking computations is very complex and

time consuming. Therefore, it greatly limits the initiatives

of design personnel and causes some underground engineering

designs to only consider satisfying the strength requirements

but not to consider whether or not the arch shape is optimized.

*. This results in undeserved waste and even fractures and. breaking.

Abroad, Mositekefu summarized research design tests of large

area underground structures in the modern Soviet Union [71 and

proposed that when the top and sides sustain evenly distributed

loads, we should not consider the approximate rational axis of

the crushing of the arch - the rope curve (this is identical to

the egg-shaped curve proposed by the Wuhan Institute of Hydro-
electric Power [221). When this curve is used to carry out

optimized arch shape design, it is necessary to first draw the4,

A arch diagram point by point based on the curve equation and then

based on the graphic method test select the center of the circle

and radius so as to attain the multicentered circle's approx-

imate theoretical curve. This method reduced the blindness of

-> .. assuming the calculations which is naturally a big step forward.

Yet, it is unable to organically integrate the optimized arch

shape with its corresponding curvature radius, position of the

center of the circle and oblique angle of the control section

etc. It requires artifical test selected circle centers and

radii and therefore the artificial discrepancy is relatively

large. Even if we use test drawing to obtain the optimized arch
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shape indicated by a multicentered circle, as soon as it is in

contradiction with the service clearance and construction re-

quirements, it is difficult to resolve the overall plan. There-

fore, even Mositekefu himself considers that: "We are often

unable to use the most advantageous sectional form of the static

load conditions based on the construction conditions." He

finally concluded that: "In the majority of situations, when

considering the convenience of the construction conditions, the

contour of the large span arch axis should use the circular

curve t71." Is this circular curve a single centered circle or

multicentered circle? How is its optimized radius determined?

If it is a multicentered circle then where should its curva-

ture's changing points be? If it is a straight wall single
.4

centered circular arch, how do we select its optimized vector-span
and rise-span ratios? These problems have not yet been re-

solved and therefore we are still unable to effectively guide

engineering practices.

The method proposed in this paper is a method which, on the

basis of resolving the above problems, attempts to find the

optimized arch shape by emphasizing the solution of the common

seen loads of underground engineering. The main features of

this method are: (i) it has fast speed and is simple and con-

venient. By using an electronic computer for about 10 minutes

we can obtain an optimized arch shape which raises the work
efficiency several tens of times more than the check computa-

tion method. (2) It can provide at one time several different

optimized arch shape plans which is convenient for designers to

carry out technical and economic comparisons and select a

feasible plan which has rational stress, saves on investment,

is convenient for construction and can satisfy the service re-

quirements. (3) When test data on the stratigraphical stress is

lacking, based on the actual arch shapes of constructed projects

and their destruction conditions, we can also deduce their load

distribution pattern to provide data for engineering rebuilding,
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continued building and stratigraphical comparisons.

Practice has proven that by using the optimized arch shape

*design, we can cause the structural thickness to become notice-
ably thinner under the same load and safety coefficient and

thus lower the engineering costs; or under the same conditions

of materials depletion (or decreasing the materials depletion),

we can effectively reduce or eliminate the production of

fractures and thus raise the engineering quality. This econom-

ical method is simple, convenient and easy to implement, does

not require expending capital construction investments and it

can obtain marked economic effects. Following the daily in-

creases in underground construction and advancements towards

large spans, these economic and technical effects-are becoming

increasingly noticeable. At the same time, following the

advancements in ground pressure research and measurement tech-

nology, optimized arch shape designs have also been gradually

*perfected. There is no doubt that this is of important sign-

ificance for the faster and more economical development of

underground structures.

II. Fundamental Method

(1) Curved Wall Lining Optimized Arch Shape Design

1. Establishing the arch shape's basic calculation equation,

the relationship of the arch's key elements and the arch's

shape.

Everyone knows that the arch shapes commonly used in engin-

eering are semi-circles, cyclotomic ellipses, three centered

circles, parabolas, catenary, horseshoe arches etc. (Fig. 1).
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Fig. 1 Arch shapes commonly used in engineering.

Key: (1) Semi-circle, isometric ellipse; (2) Three-
centered circle; (3) Catenary; (4) Parabola; (5) Major
arc cyclotomic; (6) Three-centered circle; (7) High
ellipse; (8) Catenary; (9) Parabola; (10) Oblate
ellipse; (11) Three-centered circle; (12) Minor arc
cyclotomic; (13) Catenary; (14) Parabola.

Then what generalities and characteristics do these arch shapes

have? What are the differences and connections between them?

What mathematical formula is used to express the many unknown

arch shapes among the various known arch shapes?.....If we lack

unified arch shape calculation formulas and comparative quan-

tities, the above questions are difficult to answer. In order

to investigate the relationships of the quantitative changes

to qualitative changes between the arch shapes, we introduced

a type fundamental quantity to determine the quality of the

arch shape - the arch shape's key elements (F,l, t9,V) and with

these key elements we can use a general formula to express or

6



approximate the various arch shapes. In considering the conven-

ience of the design and construction, below we use the three-

centered circle as the basic system (Fig. 2).

Fig. 2 Reference diagrams of arch structures.

When we know the arch's key elements, F,l, B and V, then

R=(F-K11/2)/ K2.

In the formula

11 tg (8/2). K, - sinipCtg (q/2) - Kil

a= Rsinq--/2, b= .cteB (1)

r = R - a/SinG

This is the arch's basic calculation formula. In the

formula:

F and 1 are separately the rise and span which can be deter-

mined by the service requirements.

B and C are separately the included angles between final

point section and vertical line of the first and second circular

arcs which can be determined based on the load distribution and

vector-span ratio.

r and R are separately the radii of the first and second

*circular arcs.

". .
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a and b are separately the horizontal and vertical distances

between the first circle center and second (third) circle center.

By substituting the F o1 and Co of the inner contour into
0 0 0

formula (1), we can obtain the inner contour's related dimension

Ro0r0a ° 0and bo. In the same way, by substituting F,l and I of

the inner contour (or F1,11 and Tl of the outer contour) into

formula (1), we can obtain the related dimensions of the axis

(or outer contour). After the e value is determined under load

distribution conditions, it is a constant and therefore the

value does not change when calculating the inner, outer or axis

contour.

F and 1 (F1 ,l 1 ) can be found based on the designed top thick-

ness of the arch d and springer thickness of the arch d . Basedo n

on formula (2) we find

1 (2) * (2)+/2-d/2.COS 1,
(4) , ..sitl(
(4) Fd. =F./z-d./2.COS,.

Key: (1) Axis span; (2) Axis rise; (3) Outer contour
span; (4) Outer contour rise.

In the formulas, 10 and F separately indicate the clear span

and clear-rise.

The method for finding 0 and ( 0 1 i ) is described in

detail in the book entitled Determination of the Key Elements of

the Optimized Arch.

It can be proven that when the arch's key elements 4 and and

vector - span ratio F' use different numerical value combinations,

8
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it can express or approach the various different arch shapes

(Fig. 3). When ; Z arctg2.2F' and T =arctg4F', it approaches

a parabola (the bottom curve in the figure) and each point on

the line represents a different parabolic arch shape, for example,

(,@, andG. When P =arctg2F' and 9=450 (the upper line in

the figure), it is a circular arc line and each point on the

circular arc line represents a different cyclotomic or semi-

circle such ass, Q, 0and a in the figure. When e=arctg2F'

and 9 =90*, it indicates a semi-elliptical line and each point

on the line indicates an oblate semi-ellipse, high semi-ellipse

or isometric ellipse such as , Q, ® and ® in the figure. The

vector-span rati of the point where the isometric ellipse and

semi-circle intersect is F'=0.5 and when separately substituted

into the circular arc line or semi-elliptical line arch shape's

key elements calculation formula, we can find similar arch shape

key elements. That is, when 9=450 and C=900, this explains

that the isometric ellipse is a semi-circle. We can see from
Fig. 3 that when F' < 1/2, the semi-elliptical line is above

the circular arc line and when F' > 1/2, the semi-elliptical line

is below the circular arc line and the parabola is always below

the circular arc line and semi-elliptical line. However, the

smaller F', the closer the circular arc line and semi-elliptical

line; the larger F', the closer the semi-ellipse and parabola.

This completely coincides with the actual arch shape when in

Fig. 1.

9
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Fig. 3 Relationship of- changes of the arch shape's key elements
* and the changes of the arch shape.

Key: (1) Major arc oblate ellipse area; (2) Depressed
arch area; (3) Major arc high elliptic depressed arch
area; (4) Major arc cyclotomic line; (5) Semi-circular
or isometric elliptic point; (6) Pointed arch area;
(7) Major arc high elliptic pointed arch area; (8) Oblate

semi-elliptic line; (9) Minor arc oblate elliptic area;
(10) Minor arc cyclotomic line; (11) Minor arc oblate
elliptic area; (12) Oblate parabola; (13) Mutual

* approach area of cyclotomic line, catenary and parabola;
(14) Minor arc high elliptic area; (15) High semi-
elliptic line; (16) High parabola; (17) Explanations:
a single line indicates an arch shape represented by
certain points in the figure; the black thick linesFindicate the change range of the area's arch shape when

a~ertamn rd-span ratio;, @, and 9 e~arab las;S cang te icular c nes; and 2
oe mi-elli ses; ,15, 6, 17, (6) iand area c

ellipsesr ad hihelpi6pitdac9re;()Olt

(14)lie arc hih eandl are minor arc ellipses.
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Any one point M(F',4') on Fig. 3 represents a specific arch

shape. The different points then represent different arch

shapes. The collection of many points with the same character-

istics form an arch shape area, for example, the depressed arch

area (this is a collection of arch shapes with innumerable

r > R. It includes the major arc high elliptic depressed arch

area and major arc or minor arc oblate elliptic depressed arch

area) and the pointed arch area (this is a collection of arch

shapes with innumerable r < R. It includes the minor arc oblate

elliptic pointed arch area and major arc or minor arc high

elliptic pointed arch area etc.). They use the circular arc

line (mostly r=R arch shape collections including major arc

cyclotomic, minor arc cyclotomic and semi-circles) as the bound-

ary line. Based on the names of the separate arch shape areas,

we can know the generality of the area's arch shape. For ex-

ample, the major arc oblate elliptic depressed arch area

indicates an arch shape area wherein the arc length is greater

than the semi-ellipse's arc length, the vector-span ratio is

smaller than 1/2 (F'l 1/2) and the radius of the first circular

arc is larger than the radius of the second circular arc

(r> R); the minor arc high elliptic pointed arch area indicates

an arch shape area wherein the arc length is smaller than the

semi-elliptic arc length, F'> 1/2 and r< R; and the cyclotomic,

parabola and catenary approaching areas signify three mutually

close arch shape areas (Fig. 3). Calculations show that when

F' 1/5, the longituding coordinate error of the circular arc

and its corresponding catenary does not exceed 1.7% (the cor-

responding catenary is the catenary with the arch axis coeffic-
2ient m=1/2[F/(l-Yl/ 4 )-21 -1 and yl/4 is the longitudinal

coordinate of the circular arc in the arch span 1/4 point); when

F' 1/10, the maximum errors of the longitudinal coordinates of

the two do not exceed 1/1900 and is also very close to the para-

bola. However, in the same arch shape area, the arch shape of

each point is not completely the same and all have slight dif-

ferences indicating the intrinsic individuality of this point's
'l
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arch shape. If we can find the longitudinal coordinates

(F',9D) of the optimal arch shape point based on the load size

and distribution etc. factors, then we can conveniently obtain

the optimixed arch shape suitable for this load situation.

2. Determination of the key elements of the optimized arch
shape - relationship of the load and optimized arch shape.

The optimixed arch shape is an arch shape which can cause,

under certain load effects, the bending moment of each section

to the minimum and even zero. The horizontal coordinates use

the arch's springer center and the longitudinal coordinates use

the vertical line of the vault. See Fig. 4 for the calculation

diagram.

e -,--- e Lq

Fig. 4 Calculation diagram of optimized arch shape equation.

We can deduce the optimized arch shape equation from the 
prin-

ciples of mathematical mechanics as follows:

x +,W.I +Y12/4F -4FY-0.2 5110 (3)

In the formula, is the lateral pressure coefficient and

= e/q.
12



The arch shape which satisfies the optimized arch shape

equation can cause the bend moments of the sections of the

three-hinged arch to be zero and although it is unable to

create the ideal condition for the hingeless arch etc. of the

bending moment of each section's constant load being zero (the

reason for this is simply that the axial force effects in the

deformation of the arched structure are small), yet it is not

equal to zero. However, by using other curves as the arch's

axis there is a greater possibility of making the constant

load's bending moment of each section zero [23]. Therefore, use

of the above optimized arch shape equation is still the most

appropriate. By doing it this way, we can cause the constant

load's bending moment to decrease to the lowest limit yet it

still can be regarded as an optimized arch shape.

Below we further analyze that when 4 =0, formula (3) becomes1 '2)
y= (l-4x )F (4)

In the formula, x'=x/l. This is a parabolic equation and

explains that its optimized arch shape is a parabola only when

there is a vertical evenly distributed load. It can be
approached by using the three-centered circle with

arctg2.2F' and C=arctg4F'.

In actual engineering, the lateral pressure is never zero.

At this time > 0 and then formula (3) can be simplified as:

x 2/A 2+(y-E) 2/B 2=1 (5)

In the formula:

.4 A=BVC.

This is an elliptic equation. It is the optimized arch

shape equation when there are the joint effects of vertical

evenly distributed load and laterially and even distributed load.

13
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We can know by using the geometric chart making method from

a mathematics handbook [24] that by using the circular arc

method we can approximately make an elliptic diagram (5).

a) ,:W b q9

Fig. 5 Calculation diagram of arch shape's key elements.

Based on the arch shape's basic calculation formula and the geo-

metric relations in Fig. 5, we can obtain

@it.a ctg (B/A)=arctS (1/AV)

ysmacco
; , (2)

Key: (l)-(2) Optimized.

In the formula, K1=tg( /2). After obtaining eoptimized

and L9optimized from formula (6), we can obtain each of the

optimized arch shape's related dimensions calculated according

to the arch shape's basic calculation formula (1). In actual

engineering design, we can also use Fig. 6 to directly find the

optimized arch shape's key elements e and C . The method is

14
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to make a vertical line according to a known vector-span ratio

F' which intersects with the lateral pressure coefficient .

at one point. From this, the intersecting point which goes

from the horizontal line to the longitudinal coordinate area

can be read as the CP value. Moreover, the 4 line can be read
4 as the G value.

Under special situations, when the vertical evenly distri-

buted load and horizontal laterally and evenly distributed load

are equal, 4 =1 and formula (60 can be simplified into

goptimizedmarc tg(I/4T)=450-

optimized=2arc tg2F'

It shows that the optimized arch shape is the circular arc

(major arc cyclotomic, minor arc cyclotomic or semi-circle)

when the vertical and lateral evenly distributed loads are equal.

3. The curved wall lining optimized arch shape design

method - relationship of the load and optimized arch shape.

Above, we established the relationships of the arch shape

and arch shape's key elements and that of the load and arch

shape's key elements. Then, by further using the arch shape key

elements as the bridge, we can establish the relationship of the

load and the optimized arch shape. In essence, the design of

the curved wall lining optimized arch shape obtains the optim- .

ized arch shape's key elements based on the load and then

solves the optimized arch shape. The method is very simple.

The specific steps are:

(1) Based on loads q and e computed from the actual

measurements or related design standards, we find. laterial pres-

sure coefficient , ; we find rise-span ratio F'=F/I based on

15



span 1 and rise F determined from the service requirements.

(2) Based on 1 and F' we obtain a and C from formula (6)

or directly find the optimized arch shape's key elements 6 and
* from Fig. 6.

(3) By substituting a known value into formulas (1) and

(2), we can obtain the related dimensions of the optimized arch

shape and then draw the optimixed arch shape diagram.

7 •

4

I I

Whe U, = 1, fom l I I I t Ia vter IsII I or

" "

-6 ' -1 as 09-0 s 2. Is :

Fig. 6 Diagram of the selection of the curved wall lining

optimized arch shape's key elements. l

When r =n, formula () changes into a very simple form
because when J =1 then =2arc tg2F' .

• .. R r= -b-C ... ... (1-1)"

Sometimes, for artistic requirements, we can also first [
determine the value. Optimized vector-span ratio F' is

16
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..obtained based on and from Fig. 6 and afterwards we sub-

stitute in formula (1) and (2) and obtain the optimized arch

shape. For example, when the arch is const:ucted according to

the semi-ellipse, by taking CP =90 ° we can then obtain optimized

vector-span ratio F'=l/2 IT from formula (6) (naturally, it

can also be looked up in Fig. 6) and the basic calculation form-

ula of the arch shape can be simplified as:

.:%R -. (F - o. S,11) ,,, 1 - K o

-. "R-OS b aCtgO (1-2)
r R - a/sinO

Key: (1) In the formula.

The curved wall arch shape structure designed according to

the optimized arch shape basically does not have bending moment

or only has very small bending moment and therefore this can

be disregarded. Thus, it also does not produce elastic resist-

ance. Therefore, we can only consider the effects of the axial

pressure which causes the calculations of the inner force and

sections to become very simple.

Example 1: a certain known tunnel has a clear width of 4.9

meters, a clear height of 7 meters, lateral pressure coefficient
•, =0.4 and we try to find the inner contour dimensions of the

curved wall optimized arch shape.

(1) (2) (3)

-1.4825
:%"" 4-0.4

Key: (1) Known; (2)-(3) Meters.

17
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q.¢14

Xe-arc til $4"418.4V-57.7

X, = tg(0/2) =0.5508

.@=a.C58) 4 X 0.4 x 1.4 v'2 .4

111.4761"

Key: (1) Solution.

( 9 and 9 can also be directly looked up in Fig. 6).

X2= siMqPtg(P/2) - K13 = 0.8536

,- (F.- 0.sK,1.)/K, I.62o0N 1)
uR'in% -0.51 -3.7104*(2)

,,, ,-',/nO= 2.228 (3)
4, _= e=Z.3467* (4)

Key: (1)-(4) Meters.

Its arch shape is as shown in Fig. 7.

-' -1.4286 -0.4

Fig. 7 Inner contour of optimized arch shape.

In the same way, if it is necessary to calculate the contour

of the axis or the outer contour, we can still calculate

18



according to the above mentioned method. However, only rise F,

span 1 and angle 9 are different. If the sections are constant

sections or the variable sections do not have large changes in

thickness, we can also assume that the V angle does not change

and its error is very small.

Example 2: the strata pressure measurement results of a

certain two line tunnel on the southern section of the Beijing-

Guangzhou line are: the mean value of the lateral pressure is

nearly equal to that of the vault and when it is slightly larger

* than the pressure of the vault we can approximately take

=1[25], find the optimized arch shape during its construction
4-

and compare it with the pressure curve calculated from the

measured data. The maximum measured load of this tunnel is

41.4 tons/meter2 and we attempt to estimate the thickness of the

structure.
4

We can know from the figures in this paper that this tunnel's
outer contour rise FI=10.85 meters, external span 11=13.1 meters

and .* Fi=F /1I=0.8282.

When = =, it can be directly solved by formula (1-1):

% 1=2arc tg(2Fi)=l17.7624 °

Therefore, R =1I/2sin *l=6.1307 meters

When we estimate the thickness of the section, we can cal-

culate the axial force based on the following formula:

N !qR 1 253.81 tons

When using Number 150 concrete, its axis compressive strength
4- 2R =850 tons/meter Based on the provisions of the "Tunnel4- a

Stipulations," when using compressive strength control under main

load effects, safety coefficient K is taken as 2.4.

..d=NK/R a 0.717 meters, taken as 0.75 meters
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If we use constant sections, then axis radius R=R -0.75/2=
5.7287 meters. Inner contour radius Ro=RI-0.75=5.3537 meters.

When we consider the effects of non-uniform load distribu-

tion, pressure fluid and seasonal underground water on strata

pressure, we can use reinforcing bars based on the structure.

The above mentioned optimized arch axis is as shown in

Fig. 8 and when compared to the pressure curve made in the bend-

ing moment diagram which was calculated from the actually

measured strain value of this engineering, their regularities

are completely identical. The optimized arch shape curve is a

*major arc cyclotomic, the pressure curve is also an approximate

major arc cyclotomic and the two have flatter vaults than that

of the original design and the hances and toes are raised out

a little more towards the outside. This is advantageous for

preventing the observed vault from arching upwards, the inner

rim of the vault from being crushed and destructive phenomena

such as the hance and toes being pulled and cracked etc. More-

over, it causes the thickness of the structure to become thinner.

C4).

4)05) 7 (9)
(2) E4I6 (10)

(3) . '

12) , 1 - .,1 )

Fig. 8 Comparison of optimized arch axis, original arch axis
and pressure line.

Key: (1) Pressure curve; (2) Original arch curve;
(3)-(4) Bending moment curve; (5) Original arch
curve; (6) Pressure curve; (7) Optimized arch axis;
(8)-(9) Original arch cur~e; (10) Optimized arch
axis; (11) 400 tons/meter ; (12) Bending moment
diagram calculated according to measured strain
and pressure curve; (13) Optimized arch shape cal-
culated according to measured load [approximatelytaken as =1].
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(2) Straight Wall Lining Optimized Arch Design

In .considering construction convenience and the full utiliza-

3tion of the interior space especially when the lateral pressure

is not large, we often use the straight wall arched structure in

engineering. The straight wall arched structure first considers

construction and service requirements and although it cannot

cause the bending moment of each section to approach zero as

does the curved wall lining, yet under certain conditions by

selecting a suitable vector-span ratio or rise-span ratio we can

* cause the bending moment of each section to be relatively small

and the distribution to be relatively even thus attaining to

rational economic goals.

1. Basic Formula for Calculating the Internal Force

Because the optimized arch shape with a straight wall arched

structure still has certain bending moment and axial force, it

is necessary to first fix certain conditions (e.g. the arch's

shape, base form etc.), then calculate the internal force and

afterwards make comparisons so as to be able to determine whether

or not it is optimized. For this reason, below we will enumerate

the basic formula for calculating the internal force:

Mi=, qj1 N,=Pj q1 (7)

In the formula, M. and N. are separately the bending moment
1 1

and axial force of the i section. ai and are separately the

bending moment coefficient and axial force coefficient of the i

section.

Key: (1) Springer.

A and B separately indicate the arch shape and base form
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effect coeficients under vertical uniform load and lateral I
uniform load. Their values are equal to the ratio of the arch

springer's horizontal thrust and ql which can be looked up in
structural manuals or directly calculated.

a springer is the arch springer's bending moment coefficient

and the arch springer's bending moment coefficient of the hinge-

less arch can be looked up in or calculated from a structural

handbook. The aspringer of three-hinged arches and double-

hinged arches are zero. See Fig. 9 for details on the other

arches.

BIBIB 4:'

~'~ -c/F x4 xl

i h=WI' f,.W t

X" = / 1 -iq -

' - (If -

Fig. 9
Key: (1) Springer.

We can use formula (7) to calculate the internal force of

arbitrary sections of straight walls, curved walls, arbitrary

arch shapes (cyclotomic, semi-circle, elliptic, parabolic etc.)

and arbitrary base forms (hingeless, double-hinged and three-

hinged). Only A, B and a springer are different.

For example: the brick, concrete etc. straight wall vault 1
'I
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structures commonly used in civil air defense engineering are

generally analyzed based on the constant section double hinged

straight wall circular arch [26]. By using the force method

to solve a statically indeterminate structure, we can obtain

the A and B coefficient values of the constant section double

hinged straight wall cyclotomic arch

A 11/14 - lb"'sin/2
8h- 3sin'9/3 +1 4tph'2dn39p +. pijh'sin (8)

B =_h in + + 29h'Isin3 3 4 h'"sinp+ 1.51111'SifW 4 +1?4
.. q' - 8h'3,M,+l/3 + 49h,',sin 3 T + 4111h'sin2 + itsimp

In the formula
_%f-

: +:' .3n ,=s- -p -cosv
V %i 0.54p- I-5Bifl9CO$(p +qP.CCEA(

q, -0. 59 - 0. 5 sin cos + . - cos* : 4P

-sinircosq)

14= (0.5q-0.Ssin9 c=0) cO9

11, = 17sia2 9 + 71, - sian9 /3
.11 = 21h/3 - ',scp - 211J3

When it is a constant section double hinged semi-circular

arch structure:

-:qT=/2 -.s-p= l, cos,=0oh=1,7I2 -= /4

-Ji23t (1 )

Key: (1) Substituted into.

*The formula has
A* • ,'/S + i/6

A h')/3 + 2Ih".. 4hI .,/4

8h/ /33 2 + 4' +- /4

% a When it is a constant section double hinged drop circular

arc arch:
<-Vq

h--' = :.A= ,/(41 VsnP)
B= 116/(411in9) (8-2)
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When it is a constant section double hinged drop semi-

circular arch:

(I)
I :9=x/2 *.75 =1$o=2/3 7:zX/4 inP1 Ah' 0

Key: (1) Moreover.

By substituting in formula (8), we can obtain

A=B=2/31f Z0.21221 (8-3)

The springers of the above mentioned structural arches are

all hinge supported and therefore all of the aspringer are zero.

In the same way, we can obtain the A, B and aspringer values of

the hingeless arch or three hinged arch, the constant section

or variable section, with straight wall or without straight wall,

circular arc or parabolic arches etc. By substituting in form-

ula (7), we can obtain the bending moment axial force.

2. Internal Force Line Calculation Graph

We can know from the internal force calculation formula that

the arch shape, base form, rise-span ratio, vector-span ratio,

change law of the section's thickness, lateral pressure coef-

ficient as well as the section's position etc. all influence the

size and direction of the internal force. In order to use the

relatively uniform optimized arch shape with small bending moment,

we changed the many factor problem into a single factor problem.

We first fixed certain conditions and afterwards found the

relationship of the bending moment of each point on the cross
section (e.g. the vault, hance, springer, wall etc.) and the

axial force coefficient which changes with the lateral pressure

coefficient from formula (7). This is the internal force line

calculation graph.

Example: Figure 10 shows the internal force line calculation

24
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graph of the constant section double hinged straight wall semi-

circular arch when rise-span ratio h1=0.65.

C I 4-C., .--

.Fig. 10 Bending moment coefficient line calculation graph of
double hinged straight wall semi-circular arch.
Employed conditions: n-d/dn=l; f'=f/l=l/2;
h/1=0.63; i point bending moment Mi=aiql2 .

A4. If the above mentioned conditions change then the line calculation

graph also correspondingly changes. Appendix 9 of Reference (27)

has completed over 100 internal force line calculation graphs of

ten types of arches including the double hinged constant section

circular arch, hingeless constant section circular arch, hinge-

less variable section semi-circular arch, double hinged variable
section parabolic arch, hingeless constant section or variable

section quadratic parabolic arch, constant section straight wall

circular arch, variable section straight wall circular arch etc.

and we will not go into details here. During use, we should pay

attention to carrying out calculations by selecting line calcu-

lation graphs compatible with the engineering conditions. Its

usage and special features are:

(1) When using the line calculation graph to solve each

section's internal force, it is easy to use and does not easily

produce mistakes. After finding a line calculation graph
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compatible with the engineering conditions, it is only necessary

to find the position of lateral pressure coefficient 4 on the

horizontal coordinates which is determined by the load sustained

by the actual engineering. We use this point as the vertical

line which intersects with each d" (or 4i ) line and then the

longitudinal coordinate of each intersecting point is the bend-

ing moment coefficient (or axial force coefficient). Afterwards,

based on formula (7), we can calculate each bending moment and

axial force and make bending force and axial force graphs.

Because the line calculation graphs clearly show the most non-

advantageous sectional positions and the sizes of their internal

force coefficients, it is very convenient when carrying out

sectional strength checking. Because one can at one glance see

the most non-advantageous sectional position, it is only nec-

essary to directly check compute the most non-advantageous sec-

tional strength. It is unnecessary to individually calculate

each section's internal force to determine the most non-

advantageous sectional positions. Therefore, it raises the work,

efficiency to a relatively large extent but does not easily

produce errors. At present, although many structure handbooks

such as Reference (28] etc. separately give the vault and springer

bending moment coefficients under vertical and lateral load

effects, during use it is necessary to superpose the bending

moment coefficients of the two types of loads and also addition-

ally calculate the axial force coefficient which is still quite

troublesome. Based on the energy method, Qinghua University used

the computer calculated "Straight Wall Arch Shape Lining Static

Calculation Table" etc. [21,29] and although they overcame the

above drawback yet it was only suitable for situations with

vertical and uniform load effects. However, in actual engineering,

most have lateral load effects and so it is also necessary to do

additional calculations for this type of situation.

(2) The line calculation method has more control over the

section and it easily and accurately determines the non-

advantageous sectional positions. This is beneficial to correct

26



design and for avoiding unsafe factors. Generally, the struc-

tural data only give the internal force coefficients of one to

two sections yet these two sections (vault and springer) are

usually not dangerous sections. For example, for a double

hinged semi-circular drop arch under vertical evenly distributed

load many references only give vault bending moment

M 0=0.0189qi In reality, the maximum bending moment is on the

section of hance 2*Y=65', M ma=0.0225ql2 . Based on

o= -0.0223qi consulted from the line calculation method,

the errors are much smaller as compared to the latter. In the

example of calculating the straight wall semi-circular arch

given in Reference £26], after calculating the internal force

and eccentric distance of the vault and springer, they determined

that the most non-advantageous section on the arch was in the

vault (its bending moment was 0.38 ton meters, axial force 17.14

tons, eccentric distance 0.0222 meters) and based on this carried

out strength checking. However, when using the line calculation

graph with one glance we can see that the danger section is in

the vicinity of the e=67.50 section, its bending moment is

1.367 tons, axial f.rce 26.54 tons and the eccentric distance is
-0.0515 meters which is much larger than the eccentric distance

of the vault. By using this checking, they could get relatively

close to the non-advantageous section and avoid the unsafe

factors.

(3) It can comprehensively compare the sizes of each

section's internal force and their overall distribution and cor-

rectly determine whether or not the designed section is truly

optimized thus avoiding onesidedness in the analysis of the

advantages and disadvantages of a certain section. For example,

we can clearly see from Fig. 10 that when vector-span ratio

f'=0.5 and rise-span ratio h'-0.65, it is relatively suitable for

lateral pressure coefficient =0.35. Because of this time the

bending moment of each section is relatively small and the dis-

tribution is relatively uniform, when is too large or too

27
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small this causes the bending moments of several sections to

become large and the distribution to be uneven. The larger the

deviation the more non-advantageous it is. However, some

references [1,14,15,19] only researched the change patterns of

the vault section's bending moment and eccentric distance thus

obtaining the conclusion of "decreasing the rise-span ratio and

enlarging the vector-span ratio can reduce the internal force

and eccentric distance of the section and thus raise the struc-

tural bearing force." This is quite unconvincing because under

certain conditions, although the vault's bending moment coef-

ficient a decreases with the increases of f' (Fig. 11), yet
when f' is further enlarged the vault's bending moment coef-

ficient becomes zero or a negative value. When a negative
value, the absolute value of the vault's bending moment coef-

ficient increases with the increases of f' and in the same way

this is not advantageous. Even more important is the fact that

even if the bending moment of the vault section decreases, the

bending moment coefficients of other sections (hance, springer,

wall etc.) possibly increase. In reality, the bending moment

coefficient of the control section does not necssarily decrease

because the control section is not necessarily on the vault.

After considering the change patterns of the section's internal

force, we can obtain a maximum bending moment coefficient change

pattern curve such as the a curve in Fig. 11. This curve hasI max
a minimum value and this area's corresponding vector-span ratio

f' is the optimized vector-span ratio (in Fig. 11, V'optimized

=1/2.5). We can see from this that when 9 and h' are fixed

it is necessary to have a corresponding optimal vector-span

ratio f' optimized On the contrary, when 9 and f' are fixed,

N we can also find an optimal rise-span ratio h' Bothop~htiizd"

f 'and h' can be obtained using the line calculation graph.
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Fig. 11 Relational chart of straight wall circular vault's-
~bending moment and the maximum bending moment of

each section which changes with the vector-span
ratio.

The above mentioned use of the line calculation diagram as

a method to determine the rational proportion dimensions

between the load distribution and the rise-span ratio and

vector-span ratio is not only suitable for situations without

elastic resistance but it is also suitable for situations

with elastic resistance. Using the computer calculated results

which employed the chain rod method as an example (30], when

F,=1/4, h-=0.8 and f'=1/2-i/5, the influence of the elastic

resistance is as shown in Fig. 12 and the non-dimensional coef-
ficient (K14 /Ej) indicates the influence of the elastic resist-

ance. (In the expression, K is the strata elastic resistance

coefficient, 1 is the calculated span, E is the structural
~material's elastic module and J is the section's moment of

~inertia). The larger this coefficient the greater the influence
of the elastic resistance. Following the enlargement of KI 4/Ej,

~the maximum bending moment coefficient of the section correspond-

i ingly decreases yet the position of the optimal vector-span ratio

," (or rise-span ratio) does not change. We can see from Fig. 12

that when there is no elastic resistance (at this time, K 4 /EJ=0),

f, optimized221/2 and following the enlargement of K1 /EJ,

ff'optimize d is then 1/2. However, the maximum bending moment

coefficients of the various vector-span ratios gradually become

~9
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Z"JIosme to eachother. This shows that elaic resistance has bene-

FV ficial effects on the structure. It can cause the non-optimized
rarch shape to tend towards optimization yet it is unable to

cause the stress properties of already optimized arch shapes to

deteriorate. In certain situations wherein the elastic resist-

ance causes the optimized arch shape to be changeable they then

do not coincide with reality because of the assumptions of the

elastic resistance distribution range and the distribution graph.

Moreover, there is also a certain discrepancy between using the

local deformation theory solution and actual entire deformation

thus causing the calculation results to be reatlively disorgan-

ized.

-. 4

L "".",.]Fig. 12 influence of K14/Ej on the maximum bending moment

'.4

.. coefficient of sections.

.'.-Key: (1) Without elastic resistance.

(.Based on the conditions of actual arch shapes of con-

structed sites and their destruction, we can use the line cal-

culation graph to deduce the load distribution so as to estimate

Sthe real lateral pressure coefficient of the strata. This

- ,"30
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provides strata analogous materials for engineering rebuilding

and continued building and we can also accumulate data for the

study of the strata lateral pressure coefficient. See the

section on engineering examples for its method.

3. Design Method of the Straight Wall Lining Optimized
Arch Shape

The wall area of the straight wall lining is rectilinear

and the shape of the arch area was also first determined such as

the straight wall circular arch, straight wall elliptic arch,

straight wall parabolic arch etc. Therefore, the optimized arch

shape design of the straight wall lining is in essence the pro-

blem of selecting the optimized vector-span ratio or optimized

rise-span ration.

We can know from the line calculation graph that we must have

an optimized vector-span ratio f optimized corresponding to

certain 9 and h'. Therefore, each line calculation graph can

draw an optimized point on the ( ( ,h') coordinate system and the

many optimized points obtained from the same type of line calcula-

tion graph can induce an optimized curve. The many optimized

curves form a complete selection chart for rational dimensions

for the straight wall lining optimized arch shape. For example,

Fig. 13 is the selection chart for the key elements of the con-

stant section straight wall circular arch's optimized arch shape.

When used, based on lateral pressure coefficient 9 and rise-

span ratio h' we can find optimized vector-span ratio froptimized;

or based on & "f' we can find optimized rise-span ratio

hi0 ptimized; we can also obtain many paired optimized arch shape

key elements f' and h' based on a known lateral pressure coef-

ficient & for use in the selection plan.

Because elastic resistance which is beneficial to arch shape

optimization causes the optimization range to enlarge for a cave

room buiit under conditions where relatively small can supply
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relatively large elastic resistance, its optimized arch shape's
key element values allowed suitable offset. When the quality

of the surrounding rock is good, the allowed optimized vector-

span ratio or rise-span ratio of the cave room is appropriately
lowered. Yet, this is very non-advantageous for tunnels with

poor soil quality and large 6 and when the deviation of the

optimized point is too large. At the same time, we should also

pay attention that for cave rooms with small vector-span ratios

constructed in poor land areas, it is necessary to use side

tunnelling, side reinforcing, consolidation at every step etc.

construction measures so as to prevent the occurrence of cave-

ins.

IS

u utw .g m ( )
LZ

UI (3)
U UU1M-*l

Si - 4%~(4)

bb

4 9,

06 * /

"U U OU 4 U a.*%

iFig. 13 Selection chart for the optimized arch shape's key

elements of the stagtwall circular arhand do

*rsraih ac do

arch.

Key: ( c) Double-hinged constant section straight wall

semi-circular arch; (2) Double-hinged constant section
straight wall cyclotomic arch; (3) Circular arc drop
arch; (4) Arbitrary; (5) Parabolic drop arch.
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Example 3: a certain straight wall circular arch structure

sustains a vertical and uniform load of 12 tons/meter2 and the
2lateral equally distributed load is 4.8 tons/meter 2 . If we

select a wall height of 1.6 meters and the calculated span is

2 meters we attempt to determine its optimized vector-span ratio

and calculate its internal force and eccentric distance. At the

same time, we compare it with the eccentric distance of a non-

optimized arch shape.

The solution of =e/q=4.8/12=0.4, h'=h/l=l.6/2=0.8 is

looked up from Fig. 13. 6 =0.4 is taken as the Vertical line,

h'-0.8 is taken as the horizontal line, the two lines intersect

at one point and therefore the point is located near the

f' 1/3 line and we obtain f'optimized=1 /3. We further look up

the line calculation graph of the double hinged straight-wall

cyclotomic arch with n=l (constant section), f'l=/3, h'=0.8

(Fig. 14) and obtain ai and /i" Thus, we can calculate the

internal force of each section as showh in Table 1.

• 33
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Fig. 14 Key: (1) Line calculation graph of the internal force
of the double hinged straight wall cyclotomic arch;
(2) Usable conditions.

W- M.M(0 "I 9

Ali2) !______ 1_______~t3)

1 11 (3) %J J °''6"4+0?7
1111.1 2 _+0. 7 0 .3 6 S.6 +0.09 -

2 0.0080 i +0.384 0.39 1 9.36 +0.041
*I

3 W (4) -0.0100 -0.480 0.49 11.76 -0.041-

4 14 (5) -0.0 30 -1.105 049 11.76 -o.,4

i (6) , 0.00 +0.960 0.50 12.00 +0.080

(14)fc , - 12X2i,48 q1 -12 X224

Table 1 Internal force calculation table. (continued next page)
34

34



V -. 7 . . ... .

Table 1 (continued)

Key: (1) Section number; (2) Internal force; (3) Vault;
(4) Hance; (5) Springer; (6) Wall; (7) Bending moment
M (ton meters): (8) Bending moment coefficient;
(9) Bending moment; (10) Axial force N (tons): (11)
Axial force coefficient; (12) Axial force; (13) Eccen-
tric distance (meters); (14) In the table: q12=12x2=
48 ton meters, ql =12x2=24 tons.

Therefore, when we use the optimized vector-span ratio
f'optimized=i/3, emax=9 .4cm is springer 4. In the same way we

can obtain:

When f'=1/2, e max=13.4cm is at wall 5 point;

When f'=1/4, e max=15.2cm is at springer 4 point;

When f'=i/5, e max=18.6cm is at springer 4 point.

By comparing we can know that when f' is 1/3 it is optimal,

its eccentric distance is about twice as small as when f'=1/5

and therefore the thickness of the section can also be cor-

respondingly thinner.

Example 4: the covering soil of a certain underground passage

is relatively shallow. In order to increase the depth of the

covering soil, satisfy the employed clearance requirements and

consider the construction convenience etc., we determined that
the straight wall cyclotomic arch structure used a vector-span

ratio of 1/3 and we test selected its optimized rise-span ratio.

If, based on the utilization requirements; the wall height was

1.8 meters, what was its optimized span? Further, was the

relatively reduced span economical?

It is known that q=8.7 tons/meter
2 , e=4.87 tons/meter 2

', =e/q=0.56, f'=1/3, h=l.8 meters.

Solution: based on & =0.56 and f'=1/3, we can look up from

Fig. 13 that optimized rise-span ratio hoptimized =0.6,

35
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optimized span l=h/h'optimizedl. 8/0.6=3 meters.

By checking the line calculation graph (Fig. 15), we find

that amax 0.017 is at the springer and its corresponding axial

force coefficient 6max=0.5

€'°= .. " -=0.017 X3/0.5 = 0.i0Z

Key: (1) MeterS.

If arch thickness d=0.25 meters and number 200 concrete

R-160 tons/meter 2 , then 0.45d=0.1125 tneters > emax=0.102 meters

> 0.2d=0.06 meters.

t= 1.25R.b.d

1.75 X 160 X 1X 0.25 3.7>3.( ) (1 )

0.5X 8.7 x3( OXO10 )

Key: (1) Can.
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0.4 a

-' Fig. 15

Key: (1) Line calculation graph of the internal force of
the double hinged straight wall cyclotomic arch;
(2) Usable conditions.

If we use a 2 meter span, we assume the load is =0.56,

h'=h/l-1.8/2=0.9 looked up in the line calculation graph

- ,(sketch) we obtain

0. . O0506 K .L O5 I II ..

*L 3 0fwsactOne5 ql 2 2O-OSOSXS.7X21.1..?57It* (2)
Nwp..,=0qL~dftY2O.5XS.Tx2+ O.32x

1.8 X 2.3/2 - 9.36oq( 3)

Key: (1) In the wall; (2) Ton meters; (3) Tons.

The rear part calculated from the axial force is the wall's

*dead weight above the middle of the wall, the wall thickness

- selects 0.32 meters and the capacity of the concrete is
3

Y -2.3 tons/meter
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.e,,=Maz/q~s 1.757/9.36= 0.1877*>

0.4Sd-o.144* (2)

K= 1.75 x 160 x 0.32 3.8>3.6

9.36( 6X0.1877 1 )
, . .. .. 0.32

Key: (1)-(2) Meters

Attention: when the span is 2 meters, d is taken as 0.32

meters. Although the safety coefficient is sufficient yet the

eccentric distance is too large and we should increase the

thickness and recalculate. However, even though this be the

case, we can see that under the same safety coefficient condi-

tions, because we used the optimized arch shape dimensions, the

span enlarged 1 meter but the thickness became 21.9% thinner.
We can thus see that it has marked economic effects.

III. Examples of Engineering Applications

Theory stems from practice and it is only necessary to

return to practice to receive the test of practice. Below, we

will enumerate several examples of utilization so as to explain

the utilization methods and real effects.

(1) Use of the optimized arch shape design resolves the

problem of "incessant cracks" which has been unable to be

solved over the last nine years and it also raises engineering

quality.

$ The entrance of tunnel engineering at Yuanmaoshan is located

9in a poor geological area and the original design was the

straight wall three-centered pointed arch. After construction

began in 1971, beginning at a distance 60 meters from the cave

opening there was widespread cracking in the hance area and the
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.-'. cracks continually pushed forward with the progress of the con-

struction. For this reason "consultations" by related

departments were requested many times and they made every effort

to halt the cracks. They first increased the structural thick-

ness; it was necessary to reduce overbreaking as much as possible

and the essential backfill of the overbreak was dense; the

transverse arch shaped boards put up in the lining stopped the

cracks from advancing; local reinforcement; they raised the

grade of concrete, strengthened the curing and prolonged the

form removal time; and prohibited blasting shock etc. measures.

The result was that they were to no avail. Under these condi-

tions, in September of 1980, this 'unit invited us to the site

to give counsel. Based on the actual crack conditions, we

deduced the lateral pressure coefficient and based on this

designed three optimized arch shape plans. In November, we

decided on the third plan of construction based on the most con-

venient construction even though the optimized performance was

relatively poor. As expected, the cracking stopped and not

only was the structural thickness 10% thinner than the original

plan but moreover it withstood the tests of blasts in the cave.

To date (this paper was written in September, 1981), there has

not been cracking in over 200 days. We will now briefly present

the design steps:-

1. On-the-spot examinations of crack destruction of con-

structed sections. The examinations showed that: aside from

the 60 meter tunnel opening, the hance section had widespread

cracking and the crack width varied from 0.3-5cm. The crack
area geneally changed between the hance and the springer (points

3-4 in Fig. 16). The vault section of the local area (between

points 0-1) was crushed and pieces fell yet the majority of the

vault section did not have macroscopic destruction. For the

area where the vault had crushed and fallen to pieces, its

hance cracking was relatively serious.

39

. ' " "" " " " " " "
....p", *" """" ' • . 0- .

° ' "- ".t. % . -. .



W 45

Fig. 16 Constructed tunnel dimensions and destruction areas.

Key: (1) Crushed; (2)-(3) Cracking.

2. Deducing the Lateral Pressure Coefficient

Based on the actual dimensions and arch shape etc. of the

construction engineering, we can make a bending moment line

calculation graph of this engineering (Fig. 17). We can see

from the graph that when 9 =0.48, the bending moment of the

-• vault begins to change from a positive bending moment to a neg-

ative bending moment and the crushing of the inner rim of the

vault is the result of a negative bending moment. Therefore,

we can determine that I, is certainly larger than 0.48 yet how

large after all is I ? We can know from section checking that

the design standards generally do not allow the eccentric dis-

tance to be greater than 0.45d because when lei >0.45d, it is

easily destroyed and it is also easily destroyed when

al/6 ) 0.45d. It is already known that this tunnel's 1-4

meters, d-0.35 meters (using the arch's minimum thickness value),

9 can be looked up in the axial force line calculation graph

based on the estimated value ( 0.48) and when 9 is

relatively large we can approximate that 4 is 0.5. In this way,

we can estimate that when destruction is produced the minimum
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absolutevalue of the bending moment coefficient is fal ) 0.45d-

6/l=0.45x0.35x.5/4=0.197. This shows that when bending

moment coefficient a is larger than or equal to 0.197, the arch

can produce destruction.

When L =0.5, a4=0.02 > 0.0197 (Fig. 17). This shows that

at this time hance point 4 area possibly sustains positive

bending moment and the inner rim cracks. Under equal thickness

point 6 in the wall also has inner rim tensile cracking yet the

wall area in the actual engineering is very thick and did not

have cracking so we did not make a control point (the same as

below). Each of the other points a were smaller than 0.0197

and generally did not have cracking.

.. 1'

Fig. 17 Bending moment line calculation graph of constructed
tunnel.

When is increased to 0.65, a and a4 are both larger than

0.0197. MOreover, point 0 (vault) is the negative bending

moment, point 4 (hance) sustains positive bending moment (Fig. 17)

and therefore, at this time, the vault has inner rim crushing
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and the hance has inner rim tensile cracking.

When 9 further increases to 0.73, a5 and a4 are equal and

both are larger than 0.0197. This shows that the inner cracking

location will gradually shift from the hance to the springer.

Because the structural thickness and construction mass are dif-

ferent, the inner rim cracking of the arch can also occur in

the hance as well as the springer and even in both locations.

At this time, a2 is also larger than 0.0197 yet aI 1 a which

explains chat the crushing area also expands from the two sides

of the vault to point 2 yet point 0 has even more serious crush-

ing than point 1.

All three types of situations have actual engineering

destruction which shows that the lateral pressure coefficients

of each section are not definite values. However, the ones

which appear most often are the hance's inner cracks, vault

inner rim crushing or alternately non-crushing which shows that

the vault is located in the critical state of destruction which

is equal to the second type of situation. Therefore, we make

the preliminary estimate that 4 =0.65.

3. Implementing the Optimized Arch Shape Design
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Fig. 38 Charts of the optimized arch shape design 7:.=.s.
Key: (a) First plan; (b) Second plan; (c) Third plan.
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Plan 1: we used the curved wall arched structure and based

on & =0.65 and F'=4/3.5-1.1429 we refer to Fig. 6 whereby the

obtained & and T are substituted into formula (1) and we cal-

culate R,r,a and b as shown in Fig. 18a. The clearance of this

plan coincides with the requirements, the bending moment of

each section is basically zero and theoretically there cannot

be cracking. The thickness is relatively thin yet the construc-

tion of the curved wall is relatively complex.

Plan 21 for convenience of construction, we used the straight

r wall circular arc arch (cyclotomic) plan. It was known that

f=0.65 and based on the service requirements, the wall height

was 2 meters, the wall thickness was 0.35 meters, the foundation

depth was 0.35 meters and therefore h'=(2+0.35)/(3.5+0.35)~0.61.

By referring to Fig. 13, we obtain the optimized vector-span

ratio f' 1/3.5. By substituting in formula (6-1), weoptimized "
obtain:

optimized optimized

2arctg(2xl/3.5)A$590 29'23.14". By substituting in formula (1-1),

we obtain R=1/2sin optimized=2.23438 meters. This plan (see

Fig. 18b) of construction is simple, the bending moment of each

section is relatively small and the distribution is uniform.

Theoretically, it does not easily crack yet the total clear

height is reduced 1 meter (the total clear height requirement is

3.75 meters) which influences utilization.

Plan 3: we used the straight wall semi-circular arch. It

was known that 6 =0.65 and f'=0.5 and by referring to Fig. 13

we obtained optimized rise-span ratio h optimized=0.38 and the

optimized wall height h=h' optimizedl=0.38(3.5+0.4)=l.482 meters

which does not conform to the utilization requirements. Now,

using the lowest utilization requirement of 2 meters as the

designed wall height, then the designed rise-span ratio and

optimized rise-span ratio have a certain discrepancy. Therefore,
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the lateral wall will become thicker which will satisfy the

stress requirements (Fig. 18c). The construction of this plan

is the simplest and when the original arch shape changes into

the present arch shape the gradually changed section is short

and the wall height and total clear height satisfy the requre-

ments yet the stress is relatively poor. Although the section's

bending moment can be smaller than the original design, yet it

still has a certain bending moment. It can cause the cracking

to reduce yet it is unable to guarantee that cracks will not

appear.

4. Testing and verifying the construction: after deciding

the construction will be based on plan 3, in the interview stage

the cracks have already shrunk and by the approximate optimiza-

tion stage the cracks are completely eliminated. It then

goes through the test of blasts in the cave and time. The third

plan is only approximate optimization yet marked effects were

obtained in eliminating the cracking. This shows the beneficial

remedying effects of elastic resistance. It can cause the

optimized range to expand yet it cannot destroy the optimized

arch shape. It is only necessary that the designed arch shape

and optimized arch shape be close in order to be able to attain

marked effects.

(2) Use of the optimized arch shape design made the struct-

ural thickness thinner and lowered the engineering building

costs. During-peacetime, certain excavated underground shelters

are used to hold meetings or show movies and during war they

serve as shelters for people and are used to store equipment for

the three defenses. The span is 20.26 meters. Because the roof

of the underground shelter is used as a parking lot during

peacetime, the roof has three different types of loads; the blast

wave effects are the vertical and evenly distributed load, its

optimized arch shape is the parabola; the optimized arch shape

of the covering soil solid web static load is the catenary which
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is now the open web constant load. Even if we use a suitable

catenary, we can only attain several points of zero bending

moment and the bending moments of the other sections are relat-

ively small; the position of the vehicle movement load is not

fixed and we must await a load design based on the influence

line. It does not have an optimized arch axis. How do we

obtain an optimized arch shape under constant load conditions

and cause the bending moments of the above mentioned loads to be

relatively small and the axial force to be relatively large under

various different combined conditions? For this, we used the

above "arch shape approach area" (the blackened area of f', 0.2

in Fig. 6). In the arch shape approach area, the differences

between the parabola, circular arc line and its corresponding

catenary are relatively small and therefore the adaptability is

maximum for the various loads. Even if we first select a not

very suitable arch shape, yet there is slight deformation which

can change the arch shape, this type of deformation does not

cause structural destruction. After deformation, the arch shape

and load adapt to eachother and cause the stress performance to

greatly improve. Because of this, we used f'=1/6=0.16 < 0.2 and

at the same time we determined the optimized arch shape based on

the constant load. When the vehicles and blast wave loads have

temporary effects, although a certain deviation is produced,

yet because it is in the approach area, the bending moment is

generally relatively small and the horizontal thrust is relatively

large. For balanced thrust, in the design, the strata's lateral

pressure is transferred to the springer of the main arch by

means of the depressed arch's upright (Fig. 19). The depressed

arch is also designed with a small vector-span ratio. We use

the unevenness or change of an appropriate load, reduce the

bending moment and at the same time increase the horizontal

thrust of the depressed arch so as to bring into play the clamp-

ing support effects of the horizontal thrust on the upright and

improve the upright's stress state. This type of underground

shelter uses an arch shape approach area designed optimized
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arch rib double curved vault and upright optimized depressed

arch side wall. The mean thickness of the arch is 27cm (nearly

the same span and resistance and the vault is generally 60-80cm

thick, over 55% thinner) and the mean thickness of the side wall

is 54cm (over 46% thinner than most design thickness). It has

been used since the end of last year and the underground is

often filled (728 people) with movie watchers; on the roof is

often parked over ten various types of vehicles and after a 16

ton road roller rolled over it, no cracks were seen in the

structure. This engineering attempt not only saved a great

deal of investment capital (the actual present expenditure is

430,000 yuan) but also provided a line of thougfttfor the concepts

of prefabrication and use of factories for tunnel engineering

proposed by using the "optimized arch shape approach area."

1 (4)

(23 , 4S

,,l I I D L Ii L = L ' !U1,4

(2) raier;(34)Auooie (4Sttc(ilgbe)

i'Vll li , - i-- '-

(5) Ai2intak passage;. (6) Val ring:0(7)-ir heatin

(23t

Fig. 19 Schematic of main arch ring's stress of underground
shelter.

Key: (1) Equivalent static load of blast wave load;
(2) Trailer; (3) Automobile; (4) Static (? illegible);
(5) Air intake passage; (6) Vault ring: (7) Air heating

and cooling passage; (8) Electric power, dispatch broad-
casting and pedestrian passage; (9) Air exhaust paggage;
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Key: (continued) (10) ? Illegible; (11) Upright;
(12) Depressed arch; (13) Static; (14) Rock rail;
(15) Depressed arch; (16) Upright; (17) Equal;
(18) Static; (19) Equal; (20) Static; (21) Static;
(22) Equal; (23) Main arch rib; (24) Equal.

(3) Based on the calculation results for the optimized arch

shape, we will discuss the rationality of the curved wall

standard sections of China's single line railway tunnels.

Table 2 gives a comparison of the optimal arch shape's radius
and the standard design radius assuming the single line railway

tunnel's curved wall lining clear rise Fo=l.65+0.85-7 meters,

clear span 1 -4.9 meters and clear vector-span ratio F'=1.4286
0 0

when lateral pressure coefficient changes between 0.2-0.7.

(8)
5) )(9)=e/q

( )W ( *- Z. 0.3 0 4 0 5 0.6 0.7

(2) (0'.-30 ) (0-45') (0*- (o', (o' , (o, (0 (0-50.1")
12.9) 61.2.2) 2 . 52") 06
1.62 2.22 1.69 1.95 2.23 2.49 2.78 3.0

W 70, ( ..7) (4 -

R 78"51')
3.52 3.21

(4) (>75') (>78"51')i (>65.9@) i(>61.3") i(>57.7") i(>54.7") (>$2.2") (>50.1")

R" (i') i
7.47 8.13 11.38 8.16 8.62 5.72 5.13 4.70

Table 2 Comparison of standard design radius and optimized
radius.

Key: (1) Compared item an1 section position; (2) Vault
section; (3) Hance section; (4) Curved wall section;
(5) Standard design radius (meters); (6) Before
modifications; (7) After modifications; (8) Optimized
design radius; (9) Lateral pressure coefficient.
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Analysis: in the past, the inner contour design radius of

curved wall structure standard sections for China's single line

railway tunnels was: when the section is located from vault

( "Y=o) to -=30*, r 0 =l.62 meters; when -=30-750, R =3.52

meters; when Y1 shifts from 750 to the springer, R'=7.47 meters.0
From the point of view of its radius of curvature, this type of

arch shape is only suitable when lateral pressure coefficient

\ 0.2 because its radius of curvature is relatively close to

the optimized radius calculated in Table 2. By comparing it

with the optimized radius when 4 =0.2, we can see that when the
section is located at 0o- 30° , the radii of the two are separately

1.62 meters and 1.69 meters which is very close. When the sec-

tion is located in 65.90 to the springer, the optimized design

radius is 11.4 meters and the standard design radius is 7.5

meters. The standard design radius of this section is relatively

small which shows that the lateral pressure resistance capabil-

ities of the side wall sectjonof the single line tunnel's curved

wall structure standard section are relatively strong. However,

in the hance section with 'I=30°-65.9o, the optimized radius is

1.69 meters and the standard design is 3.52 meters which shows

that this section's radius has become larger and its ability to
resist lateral pressure has become smaller. A radius area which

tends to be large easily produces the destruction of inner rim

tensile cracking and practice has proven this point. The invest-

igation results of 1972 on railway tunnel cracking throughout

China showed that most of the cracks were produced on the inner

side of the hance at a 450 included angle with the vault. This

point is identical to the theoretical calculation results - inner

side cracks easily occur at 300-65.90 with the vault. The above

is only related to situations with relatively small laterial pres-

sure ( 6 =0.2), for example, what will the situation be after the

laterial pressure increases? In the 30o-0* arc section, the

radius still tends to be large and internal cracking is possible.

However, following the increase of 4 , the arc section range of
300-00 can become smaller and smaller and the difference between
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the radii of the two gradually reduces. The possibility of

izjternal cracking in this section gradually lessens. However,

the standard design radius of the vault section (0*-30* area)

tends to be small and the larger the increase of the lateral

pressure the larger the disparity. This shows that when the

lateral pressure increases, because the vault's standard design

radius is very small (very pointed), it easily produces outer

side cracks on the vault and the destruction of inner side crush-

ing due to the effects of the negative bending moment. At the

same time, 9 shifts to the springer section because the larger
the standard design radius the more the relative tendency to be

large. This section can also produce internal cracks. There-

fore, we can conclude that: from the point of view of the

optimized arch shape, when the lateral pressure coefficient is

relatively small, the original standard design section only

produces internal cracks in the hance; when the lateral pressure

coefficient is medium, aside from the internal cracks of the

hance, it can also produce slight inner rim crushing on the

vault; when the lateral pressure coefficient is relatively large,

the inner rim crushing of the vault gradually becomes more serious

and the internal cracks of the hance shift downwards to the arch

toes or wall section. In actual engineering, many inner side

cracks are produced in the hance as well as the typical destruc-

tion of inner side crushing of the vault. This shows that the

original standard design section's vault is very pointed (the

curvature is too large, that is, the radius of the curvature is

too small) and the hance is too depressed (the radius of the

curvature tends to be large). Therefore, when the lateral pres-

sure coefficient is larger than 0.2 (in reality, they are gener-

ally all larger than this value), it is not very suitable to use

the original standard design curved wall three-centered pointed

arch. Based on the investigative research of cracks in alreay

constructed engineering, some materials propose changing the

vault of the single line tunnel into a semi-circular or close to

semi-circular three-centered arch. It is better for the double
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line tunnel to use an arch axis more level than the original

arch axis (21 and it is not advantageous for the curvature of

the vault to be too large. The flat vault and curvilinear side

wall lining and other proposals worth recommending (31] are

suitable for commonly seen loess strata. The standard sections

of railways have also made modifications in this area (Table 2).

After modifications, the vault became level (the radius was

enlarged) and the radius of the hance became small. It is

doubtful that this is a large improvement causing the stress

condition to have a relatively large change for the better. By

comparing the data in Table 2, we can see that after these types

of modifications, the arch shape is relatively suitable for

strata with 4 =0.3-0.4. Yet, in most situations, in the hance

range of 450-00, the radius still tends to be large, the radius

is not much larger and the influencing effects are much weaker.

The other sections also have certain disparities but the dispar-

ities are relatively small. Therefore, the possibility of

producing destruction is also greatly reduced. However, when

the lateral pressure coefficient is much larger than 0.4 or the

roof is the saddle load effect, different dangers of destruction

still appear. Therefore, the tunnel's standard design chart

should be worked out based on the different lateral pressure

coefficients. In situations with relatively large bias or non-

uniform loads, it is also necessary to carry out additional

design. No matter what the surrounding rock pressure and its

distribution are, aside from the differences of the curved walls

and straight walls, the integrated use of one type of arch shape

appears to be improper.

Because of the limitation of space, we will not go into

detail on the applications of the optimized arch shape design

theory in analyzing the destruction mechanism of surrounding

rock, in analyzing cave room stability and destruction locations

as well as in guiding construction.
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IV. Conclusion

The optimized arch shape design which can cause arch

structures to be economical and rational is one important link

in the faster and more economical development of underground

arch architecture. When synthesizing the existing research

achievements, the optimized arch shape under commonly seen load

effects is already basically understood. For example, under

vertical uniformly distributed loads, the optimized arch shape

is the parabola; under radial uniformly distributed load effects

r or equal vertical and horizontal uniformly distributed loads,

the optimized arch shape is the single centered circle; under

vertical saddle load effects (i.e. the solid-web arch load),

the optimized arch is the catenary with different arch axis

coefficients; when the vertical and horizontal uniformly distri-

buted loads have simultaneous effects and the two are made up of

different proportions, the optimized arch shape is the three-

centered circle with optimized arch shape key elements

(F', 9 and 7 ). when the requirements are designed based on

the straight wall circular arc arch, we can select the optimized

vector-span ratio or optimized rise-span ratio based on the sel-

ection graph of the straight wall circular arch's optimized arch

shape key elements so as to use rational proportion dimensions

to approach the optimized arch shape. The straight wall elliptic

arch and straight wall parabolic arch can also refer to a similar

method to determine the optimized arch shape.

The common laws of the optimized arch shape are: (1) the

direction with large pressure should project outwards - become

pointed; the direction with small pressure should contract in

towards the inside - become level. We can perhaps say that the

elliptic long axis should be the same as the maximum pressure

direction, that i, when the roof pressure is large the cave

should be high; when the lateral pressure is large the cave

should be flat. If a high and narrow cave room is under the
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effects of relatively large lateral pressure, the inner rim of

the roof area is crushed and collapses and the floor bulges up.

Based on the principle of the optimized arch shape, increasing

the width of the cave causes the cave to become flat and often

the cave becomes stable. This is the same as the conclusion of

stress control technology [31]. (2) The load distribution is

closely linked with each curvature of the optimized arch shape:

in the maximum load direction, the curvature should be maximum;

in the middle position of the load, the curvature takes second

place; in positions with minimum or no load, it is beneficial

for the curvature to be minimum or designed as a straight line.

When the position of the load and curvature do not adapt to

eachother and the internal force exceeds the allowable strength

of the material, destruction will be produced. Pointed arch

areas. with excessively large curvatures easily create inner

rim crushing and collapse after enduring negative bending

moment and it is beneficial to enlarge its radius of curvature

(i.e. reduce the curvature); level and flat areas with exces-

sively small curvatures easily produce inner rim cracks after

enduring positive bending moment and we should enlarge the

curvature of this area (i.e. shrink the radius of the curvature).

In investigating the rational section shape of underground

cave rooms: one is based on the elastic theory. We take as the

starting point that the periphery of the cave room does not

produce tensile stress and each section only affects relatively

small toroidal pressure stress. One is based on deductions

from the structural mechanics theory. We take as the starting

point that each section of the bearing arch does not produce
.4 bending moment or only produces relatively small bending moment

and the bending moment distribution of each section is relatively

uniform. We add on the initial conditions of the two which are

not completely the same: for the former, based on the four-sided

stress and the entire section's sealed cave form, the focus of

consideration is the problem of tunnel surrounding rock
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destruction; for the latter, based on the three-sided stress
and the non-sealed lining, the focus of consideration is the

problem of the supporting structure destruction. Therefore,

under certain specific conditions, although the conclusions

have areas of similarity, yet they are not completely the same.

When 4 =0, from calculations based on the elastic prin-

ciple, the vault always sustains tensile stress and is not in
the rational section form; but in view of the structurl mech-

anics, its optimized arch shape is parabolic.

When >0, the two prove that the optimized arch shape
is elliptic and the elliptic long axis should be the same as the

maximum pressure direction. However, the elastic theory con-

siders that it should be a complete ellipse with A/B-e/q= 4
and structural mechanics considers that it is an ellipse with

A/B= 4e/q=1 or a certain part of this ellipse. For example:

when f =1/4, if it is required to use a width of 2 meters, then

the rational section of the former will be a complete ellipse

with a short axis of 2 meters and a long axis of 8 meters. At

this time, one half of the height cannot be used. However, the
latter is a part of an ellipse with a short axis of 2 meters

and a long axis of 4 meters. Its height can be determined by

the utilization requirements and be completely used (Fig. 20).

Therefore, the difference between the two is relatively large.

For the moment, we will not discuss which type is closer to

reality but wait for a large amount of future practices for
proof. However, there is one point we can explain: the rational

section of the elastic theory must be completely elliptic and

moreover the ratio of its long and short axes is only related

to g and we are still unable to consider the utilization

conditions. Therefore, its space use coefficient is very low.

A large amount of unnecessary peripheral reinforcing instead

caused the "rational section" to be even more wasteful than the
non-rational section. Therefore, it is often difficult to
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implement in actual engineering. In special situations, when

p=l, the theories of the two completely coincide and separ-

ately prove that the optimized arch shape is an isometric

ellipse with A/B=l (i.e. a circle or part of a circle).

) ;. .. (3)

(4)
(7)

(6)

Fig. 20 Optimized arch shape when L=1/4 and the width is 2
meters.

Key: (a)-(d) Height utilization rate; (1) Elastic
theory calculation results; (2) When the width (height)
is fixed, we can only determine the height based on
4 and therefore the utilization rate is low;
(3) Optimized arch shape design results; (4) The width
and height can be determined based on the service re-
quirements and 5 and (illegible) only introduce the
changes of the arch shape's key elements & and q. At
the same time we consider the stress and service
requirements and therefore the utilization rate is
relatively high; (5) The height is determined based
on the service requirements; (6) The height utilization
rate is the ratio of the usable height and total
height. In reality, within the usable height there is
also a section of space which cannot be used. We
especially take b and a as extreme and have not yet
made detailed comparisons; (7) The height is deter-
mine based on the stress requirements.

As regards the problem of the optimized arch shape with

straight wall lining, the elastic theory only studied certain
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known sections and did not attain widespread regularity. More-

over, the premise of the theory is a complete, continuous,

uniform elastomer with each direction the same but in reality

the theory and practice are unable to satisfactorily coincide.

Therefore, this paper focused on the method of structural

mechanics to investigate the rationality of the shape of the

structural section. Because we are limited we have only made

a few commonplace remarks by way of introduction so that others

can present some valuable opinions. Readers are requested to

correct the inappropriate statements made.
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